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Gene-targeted mice with deficient AMPA receptor GluA1 subunits (Gria1−/− mice)
show robust hyperlocomotion in a novel environment, suggesting them to constitute
a model for hyperactivity disorders such as mania, schizophrenia and attention deficit
hyperactivity disorder. This behavioral alteration has been associated with increased
neuronal activation in the hippocampus, and it can be attenuated by chronic treatment
with antimanic drugs, such as lithium, valproic acid, and lamotrigine. Now we found
that systemic cannabidiol strongly blunted the hyperactivity and the hippocampal c-Fos
expression of the Gria1−/− mice, while not affecting the wild-type littermate controls.
Acute bilateral intra-dorsal hippocampal infusion of cannabidiol partially blocked the
hyperactivity of the Gria1−/− mice, but had no effect on wild-types. The activation
of the inhibitory DREADD receptor hM4Gi in the dorsal hippocampus by clozapine-N-
oxide robustly inhibited the hyperactivity of the Gria1−/− mice, but had no effect on
the locomotion of wild-type mice. Our results show that enhanced neuronal excitability
in the hippocampus is associated with pronounced novelty-induced hyperactivity of
GluA1 subunit-deficient mice. When this enhanced response of hippocampal neurons to
novel stimuli is specifically reduced in the hippocampus by pharmacological treatment
or by chemogenetic inhibition, Gria1−/− mice recover from behavioral hyperactivity,
suggesting a hippocampal dysfunction in hyperactive behaviors that can be treated
with cannabidiol.

Keywords: AMPA receptors, cannabidiol, DREADD, hippocampus, c-Fos, hyperactivity, novelty, hM4Gi

INTRODUCTION

Neurological and psychiatric brain diseases cause vast harm and excessive costs to affected
individuals and the society at large (DiLuca and Olesen, 2014). There are many clinical evidence-
based pharmacological and non-pharmacological treatment options (Millan et al., 2015a,b), but
their efficacy should be greatly improved. Unfortunately, there has been a slow progress in
neuropsychiatric drug development, especially for schizophrenia, schizoaffective disorder and
bipolar disorder, justifying further efforts in finding testable mechanisms, drug candidates and
novel targets (Vazquez et al., 2017).
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Animal models play an important role in testing mechanisms
how neuronal modulations and drug effects are mediated
into behavioral responses (Cryan and Slattery, 2007; Forrest
et al., 2014), even if they cannot reproduce a full repertoire
of symptoms in often heterogeneous brain diseases. Especially
difficult are the models of psychosis, since in animals the
behavioral outcomes are usually related to motor functions
as they are most easily quantifiable. In addition to lithium
therapy, presently there are no specific drugs for the treatment
of bipolar disorder with mania (Millan et al., 2015b). A simple
symptom in that illness is the mania-like hyperactivity, which
can be habituated in a constant environment. A mouse line
with deficient AMPA-type glutamate receptor GluA1 subunits
[the Gria1−/− mouse line (Zamanillo et al., 1999)] has
been proposed as an animal model for hyperactive disorders,
including schizoaffective disorder and bipolar disorder with
mania (Fitzgerald et al., 2010; Barkus et al., 2011; Procaccini et al.,
2011). This is based on (1) robust novelty-induced hyperactivity
that is eventually habituated, leading to unaltered diurnal home-
cage activity in the Gria1−/− mice (Vekovischeva et al., 2001;
Fitzgerald et al., 2010; Sanderson et al., 2010; Procaccini et al.,
2011), (2) consistent attenuation of this behavior by chronic
treatment with drugs having antimanic efficacy in patients
(Maksimovic et al., 2014a,b), and (3) linkage equilibrium of
GRIA1-gene polymorphisms in psychotic disorders (Ripke et al.,
2013, 2014; Devor et al., 2017).

The basic characteristics of Gria1−/− mice do not deviate
from Gria1+/+ wild-type littermates (WT). Physical health,
body weight, food consumption, nociception, neurological,
motor, sexual, sensory functions, and circadian rhythm appear
normal (Vekovischeva et al., 2001, 2004; Bannerman et al.,
2004; Hartmann et al., 2004; Feyder et al., 2007; Chourbaji
et al., 2008; Fitzgerald et al., 2010; Procaccini et al., 2011).
Extensive behavioral comparison of Gria1−/− and Gria1+/+
mice suggests a schizophrenia- and depressive-like phenotype.
Deficiency in prepulse inhibition of an acoustic startle reflex
is indicative of psychosis-related properties (Wiedholz et al.,
2008) and increased learned helplessness as deficits in coping
skills in aversive situations indicative of depressive phenotype
of Gria1−/− mice (Chourbaji et al., 2008). Short term spatial
working memory of Gria1−/− mice is disrupted (Reisel et al.,
2002; Sanderson et al., 2009). However, despite the prominent
role of GluA1-type AMPA receptors in hippocampal synaptic
plasticity Gria1−/− mice can form spatial reference memory
(Zamanillo et al., 1999).

The most striking and reproducible behavioral response of
Gria1−/− mice has been hyperactivity provoked by a novel
environment. They have normal locomotion compared to their
WT littermates in a familiar home-cage environment (Wiedholz
et al., 2008; Procaccini et al., 2011), but when transferred to novel
environment, they double their locomotor activity (Vekovischeva
et al., 2001; Bannerman et al., 2004; Chourbaji et al., 2008;
Fitzgerald et al., 2010; Procaccini et al., 2011) and fail to habituate
(Barkus et al., 2011; Sanderson and Bannerman, 2012).

This increased activity is sustained, and it takes 30 to 40 min
before the Gria1−/− mice show signs of habituation to the
novelty. Thus, any confrontation with a novel signal, such

as a new object or littermate, induce an aberrant reaction
in Gria1−/− mice due to the lack of habituation (Wiedholz
et al., 2008). Similarly, in sociability and resident-intruder
tests Gria1−/− mice show remarkably low level of intermale
aggression, suggesting poor ability to adapt to social encounters
(Vekovischeva et al., 2004).

We have recently found that Gria1−/− mice react to
novel environment by increased neuronal activation of the
hippocampi, as shown by the enhanced immediate early gene
expression (Procaccini et al., 2011). In the present study, we
used Gria1−/−mice to analyze the effect of systemic application
and acute hippocampal infusion of the non-psychoactive
phytocannabinoid cannabidiol (CBD) (Izzo et al., 2009) on the
hyperactivity and hippocampal c-Fos expression in Gria1−/−
and controls. CBD has been shown potential as treatment for
schizophrenia (Schubart et al., 2014). We also tested whether
selective inhibition of the dorsal hippocampal principal neurons
is sufficient to down-regulate the hyperactivity by using the
activation of the virus-mediated, cell-type specific expression
of an inhibitory designer receptors exclusively activated by
designer drug (DREADD) (Roth, 2016), the hM4Gi receptor
(Armbruster et al., 2007).

In our experiments, both the CBD and DREADD approaches
attenuated the behavioral response to novelty of Gria1−/−
mice, indicating that the paradoxical hippocampal activation is
associated with hyperactivity of this mouse model. Importantly,
acute infusion of CBD specifically into the hippocampus reduced
the abnormal hyperactivity of the Gria1−/− knockout mice
but did not affect the spontaneous activity of the wild-
type littermates.

MATERIALS AND METHODS

Animals
Gria1−/− mice (Gria1−/−, Gria1tm1Rsp; MGI:2178057) and
their Gria1+/+ wild-type littermate controls (WT) were from
heterozygous breeding, generated by inactivation of the Gria1
gene (Zamanillo et al., 1999) and genotyped as described
(Vekovischeva et al., 2001). The Gria1−/− mouse line is
available at the Jackson Laboratory (B6N.129-Gria1tm1Rsp/J, stock
number: 019011). Mice were group-housed under standard
laboratory conditions (12-h light-dark cycle; lights on at 6:00
A.M.; temperature 20–23◦C; relative humidity 50–60%; aspen
chip beddings). For locomotor activity, a total of 24 Gria1−/−
(14.12 ± 0.92 weeks; 24.58 ± 1.03 g) and 23 WT mice
(11.14± 0.66 weeks; 24.63± 0.92 g) were used.

All experimental procedures were approved by the State
Provincial Government of Southern Finland (ESAVI-
0010026/041003/2010). All efforts were made to minimize
the number and suffering of animals.

Novelty-Induced Locomotor Activity
Locomotor activity in a novel environment after acute
systemic cannabidiol treatments was observed in plastic
cages (40 cm × 30 cm × 20 cm) as described in detail
( Procaccini et al., 2011; Maksimovic et al., 2014b). At least 1 h
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before the tests was allowed for the animals to habituate to the
experimental room. Horizontal movements of eight mice, placed
in visually isolated cages in a sound-attenuated room at the
light intensity of 175 lx, were simultaneously recorded for 2 h
using EthoVision Color-Pro 3.0 video tracking software (Noldus
Information Technology, Wageningen, Netherlands). The same
method, but only during 30-min recordings, was used to assess
the effects of intrahippocampal CBD infusions and chemogenetic
inhibition of hippocampal neurons (see below).

c-Fos Immunostaining
The animals were quickly decapitated after 2-h novelty-
exploration, the brains dissected, frozen on dry ice and
stored at −80◦C. Fourteen-µm thick sections were cut on
a cryostat (Leica CM 3050 S; Leica Microsystem, Nußloch,
Germany), thaw-mounted on Fisher Superfrost Plus slides
(Menzel-Glaeser, Braunschweig, Germany) and stored at−80◦C.
To obtain sections of the ventral hippocampi, we changed
the plane of cutting to horizontal one after we had collected
the coronal sections until Bregma −2.4 mm (Franklin and
Paxinos, 2008) as described earlier (Procaccini et al., 2013;
Maksimovic et al., 2014b).

In immunohistochemistry, the protocol described in
Procaccini et al. (2011) was followed. In brief, the sections
were thawed, air-dried, marked with hydrophobic pen (Daido
Sangyo, Tokyo, Japan) and all incubations performed using
so-called liquid bubble technique. The sections were fixed with
ice-cold 4% paraformaldehyde in Tris-buffered saline (TBS;
in mM: Tris, 50; NaCl, 150; pH 7.4) for 10 min. As a washing
medium, we used TBS supplemented with 0.05% Tween 20
(TBST) between incubations. Endogenous peroxidases were
blocked by 0.3% H2O2 in methanol. Endogenous proteins were
blocked with 10% normal horse serum (Sigma-Aldrich) and
avidin blocking solution (Avidin/Biotin blocking kit; Vector
Laboratories, Burlingame, CA, United States) diluted in TBST
containing 1% bovine serum albumin (BSA; Sigma-Aldrich).
Sections were incubated with goat anti-c-Fos antibody (1:1000;
Santa Cruz Biotechnology, Santa Cruz, CA, United States)
in TBST/1% BSA and biotin blocking solution (Avidin/Biotin
blocking kit) overnight at 4◦C, followed by 30 min in biotinylated
horse anti-goat secondary antibody (1:200; Vector Laboratories).
Avidin–biotin peroxidase complex (Vectastain Standard Elite;
Vector Laboratories) and diaminobenzidine with nickel sulfate
intensification (DAB Substrate kit; Vector Laboratories) were
used for visualization. Then, the sections were dehydrated
in gradual ethanol solutions (70, 96, and 99.5%), rinsed in
Histoclear (National Diagnostic, Atlanta, GA, United States)
and finally coverslipped with DPX mounting medium (BHD
Chemicals, Poole, United Kingdom).

In quantifying the c-Fos-positive cells, photomicrographs
from anatomically-matched sections were captured using a
light microscope with a 10× objective (Leica DMR, Leica
Microsystems, Wetzlar, Germany) and a CCD camera (Leica
DC 300). The analysis was carried out blind to the treatment
and genotype. Detection of c-Fos-positive cells was automatic,
using ImageJ software (National Institutes of Health, Bethesda,
MD, United States), by setting a constant threshold and ‘region

of interest’ area based on brain atlas (Franklin and Paxinos,
2008). Analysis comprised bilaterally-obtained values from one
or two sections (for dorsal and ventral hippocampi) of 12 brain
areas (as shown in Figure 2 and Supplementary Table S1).
Apart from the hippocampus, expression of c-Fos protein was
studied in those regions that may have a role in explorative
locomotor task or where relatively high c-Fos expression is
observed (Montag-Sallaz et al., 1999).

Intrahippocampal Injections of CBD
The hippocampus was targeted with CBD injections by
microinjection cannulae. Mice were anesthetized with isoflurane
(induction 5%, 2% maintenance; Vetflurane, Virbac, Carros,
France), and implanted with bilateral 26-gauge stainless steel
guide cannulae (Plastics One, Roanoke, VA, United States) into
the dorsal dentate gyrus using a stereotactic device (David
Kopf Instruments, Tujunga, CA, United States). Dental cement
(Simplex Rapid, Associated Dental Products, Ltd., Swindon,
United Kingdom) and two stainless steel screws were used to
secure the cannula placement. The coordinates used were 1.9 mm
posterior to bregma, 1.0 mm lateral to midline, and 1.0 mm
ventral to skull level. Stainless steel obturators were inserted to
keep cannulae unobstructed during the 1-week recovery period.
Animals’ recovery was monitored daily and none showed signs of
distress. Prior to experiments, the mice were gently handled and
CBD was injected through the guide cannulae by using 31-gauge
internal stainless-steel injectors protruding an additional 1.0 mm
below the guide cannulae. The injectors were connected to a
microsyringe (Hamilton, Bonaduz, Switzerland) via polyethylene
tubing. CBD (5 µg/side) or vehicle was injected in a volume
of 0.2 µL at 0.1 µL/min by an infusion pump (kDScientific,
Holliston, MA, United States). After the injection, the injectors
remained in place for 1 min to allow solutions to diffuse into the
tissue. The measurement of novelty-induced locomotor activity
was recorded immediately after the injections as described
above. After the experiments, the injector tip placements were
confirmed histologically.

Chemogenetics
Dorsal hippocampal dentate gyrus was stereotactically targeted
in isoflurane anesthesia as described above for CBD infusions.
To each mouse, a total volume of 0.15 µL of AAV5-
CaMKIIα-hM4Gi-mCherry viral vector (3.4 × 1012 genome
copies/mL, University of North Carolina, Gene Therapy Center,
Chapel Hill, NC, United States) was injected through a
31-gauge injection cannula using a microsyringe and an
injection pump as described above. The animals recovered
for 3 weeks. Thirty minutes prior to behavioral experiments
the animals were administered clozapine-N-oxide (CNO)
at 3 mg/kg i.p. in home cage. Non-DREADD-transduced
mice acted as controls to test for DREADD receptor-non-
specific effects of CNO. The measurement of novelty-induced
locomotor activity was recorded immediately after the injections.
After the experiments, the animals were deeply anesthetized
with pentobarbital (Mebunat, Orion Pharma, Espoo, Finland),
transcardially perfused with 0.1 M phosphate-buffered saline
(PBS) followed by 4% paraformaldehyde in PBS. Brains were
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removed, post-fixed overnight at 4◦C, and cryoprotected in
30% sucrose in PBS at 4◦C until sunk. Forty-µm-thick
coronal sections were cut by cryostat (Leica CM 3050 S;
Leica Microsystem, Nußloch, Germany). To visualize the
DREADD receptors, mCherry tag immunohistochemistry was
performed. In brief, brain sections were washed at RT
in 0.1 M PBS, blocked with 1% BSA (Merck, Darmstadt,
Germany) supplemented with 0.3% Triton X-100 (Fisher
Scientific, Fair Lawn, NJ, United States) in 0.1 M PBS. Sections
were then incubated overnight at RT in primary antibody
(rabbit anti-mCherry, 1:800, ab167453, Abcam, Cambridge,
United Kingdom) diluted in blocking buffer, washed in
PBS, incubated in secondary antibody (donkey anti-rabbit
AlexaFluor 594, 1:1000, ab150076, Abcam) for 2 h at RT,
washed in PBS, and mounted on microscope slides and
coverslipped. Digital images were captured with a Zeiss
Axioimager Z1 microscope using Apotome optical sectioning
(Zeiss, Oberkochen, Germany) and Hamamatsu Orca R2 CCD
camera (Hamamatsu, Japan).

Drugs
The doses of cannabidiol (CBD, from THC Pharm GmbH,
Frankfurt, Germany) were based on literature (Zuardi et al., 1991;
Moreira and Guimaraes, 2005; Long et al., 2006, 2010, 2012;

Gururajan et al., 2011, 2012) and on preliminary dose–
response experiments. The drug was dissolved in a mixture of
ethanol:Tween 80:saline (1:1:18, which was used as a vehicle for
controls) (Todd and Arnold, 2016) and injected (i.p.) in a volume
of 10 ml/kg. For intrahippocampal injection, CBD was dissolved
in 1% Tween 80 and 10% DMSO in sterile saline. Clozapine-
N-oxide (CNO, Sequoia Research Products, Ltd., Pangbourne,
United Kingdom) was dissolved in 0.5% DMSO in saline.

Statistical Analyses
Data are expressed as means ± standard errors of the
mean (SEM). Statistical analyses were carried out using IBM
SPSS Statistics 21 software (IBM SPSS, Inc., Somers, NY,
United States) using (repeated measures) two-way ANOVA
(genotype, treatment) followed by a Bonferroni post hoc test.
Statistical significance was set at P < 0.05.

RESULTS

Effect of Acute Systemic Cannabidiol
(CBD) Treatment on Novelty-Induced
Locomotor Activity
In keeping with our previous results (Procaccini et al., 2013;
Maksimovic et al., 2014b), the Gria1−/− mice showed robust

FIGURE 1 | Dose–response analysis of cannabidiol on novelty-induced hyperlocomotion of Gria1−/− mice. (A,B) Distance traveled in a novel environment in 5-min
periods after treatment with vehicle and doses of cannabidiol (mg/kg, i.p.). (C) Distance traveled from the beginning of the trial until 30 min. (D) Total distance
traveled during the whole 2 h test trial. Means ± SEMs are shown for 5–6 mice per group. ∗∗∗P < 0.001 for the significances of the differences between WT and
Gria1−/− mice after vehicle treatment; #P < 0.05, ##P < 0.01, and ###P < 0.001 between vehicle and CBD within the same genotype (Bonferroni post-test). Veh,
vehicle; CBD, cannabidiol.
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hyperlocomotion as compared to the WT mice, when placed
into an unfamiliar environment (Figures 1A,B, ANOVA for
genotype effect, F1.49 = 33.09, P < 0.001). They gradually
habituated over the observation period of 2 h (time effect

FIGURE 2 | Expression of c-Fos protein in hippocampal subregions of the
Gria1−/− and WT mice after a 2-h exposure to a novel environment with
pre-treatment with vehicle or cannabidiol (15 mg/kg). (A) Representative
images of the dorsal hippocampus. (B) Counts of c-Fos+ cells in the
subregions of the dorsal hippocampus. Open bars for the vehicle- (VEH)
treated and closed bars for cannabidiol- (CBD) treated groups.
(C) Representative images of the ventral hippocampus. (D) Counts of c-Fos+
cells in the subregions of the ventral hippocampus. Means ± SEMs are shown
for 4–6 mice per group. ∗P < 0.5, ∗∗P < 0.01 for the significances of the
differences between genotypes after the same treatment, #P < 0.05,
##P < 0.01 for the difference from the vehicle within the same genotype
(Bonferroni post-test). Scale bar: 100 µm.

F23,1127 = 56.89, P < 0.001), although not down to the average
level of WT mice (time × genotype interaction F23,1127 = 2.23,
P < 0.01), as determined by the comparison of the mean path
length of the last three timebins (genotype effect, F1,10 = 6.48,
P < 0.05). CBD treatment dose-dependently attenuated the
novelty-induced hyperlocomotion of Gria1−/−mice (treatment
effect, F4.49 = 4.16, P < 0.01; genotype effect, F1.49 = 33.09,
P < 0.001), while the locomotor activity of WT mice remained
unaltered (treatment × genotype interaction, F4.49 = 3.74,
P < 0.01; Figure 1, Bonferroni post-test, vehicle vs. CBD,
P > 0.05). Post hoc comparisons showed that all doses of CBD
(15, 60, and 100 mg/kg), except for the lowest dose (5 mg/kg),
brought the hyperactivity of Gria1−/− mice back to the level
of WT mice (Figure 1C, locomotor activity analyzed from the
beginning of the trial until 30 min, and Figure 1D, locomotor
activity analyzed over the whole 2 h trial, Bonferroni post-test,
P > 0.05 for the genotype difference within all doses, except for
5 mg/kg, when it was P < 0.001). The 5 mg/kg dose seemed to fail
to rescue the hyperactivity of theGria1−/−mice in the beginning
of the trial, but to facilitate the habituation in the later stage of
the trial (Figures 1A,B, time× genotype× treatment interaction
F92,1127 = 1.85, P < 0.001).

Effects of Acute Cannabidiol Treatment
on c-Fos Expression
As the lowest effective dose of cannabidiol to block the
novelty-induced hyperactivity in Gria1−/− mice was 15 mg/kg
(Figures 1A,B), we analyzed the brain regional c-Fos protein
expression after this dose (Figure 2). In the dentate gyrus
granule cell layer of the dorsal hippocampus, the number of
c-Fos-positive cells of the vehicle-treated Gria1−/− mice was
significantly increased compared to the number of c-Fos positive
cells in WT mice (Figure 2A, genotype effect, F1,20 = 9.32,
P < 0.01). The CBD treatment of WT mice did not alter
the number of c-Fos positive cells in the dentate gyrus, but
CBD normalized the number of c-Fos positive cells in that
of Gria1−/− mice (Figure 2B, treatment effect F1,20 = 7.34,
P < 0.05; genotype × treatment interaction F1,20 = 6.90,
P < 0.05). However, in the CA1 subfield, CBD treatment
decreased c-Fos-positive cell counts in both Gria1−/− and
WT mice (treatment effect, F1,20 = 7.35, P < 0.05). The
c-Fos cell count in CA3 was equal between the genotypes
(F1,20 = 0.001, P > 0.05) and not affected by the CBD treatment
(F1,20 = 0.12, P > 0.05).

In the ventral hippocampus (Figures 2C,D), novelty-induced
hyperactivity did not change the number of c-Fos positive cells
in dentate gyrus subfield (genotype effect for DG, F1,19 = 0.24,
P> 0.05). In the CA1 subfield,Gria1−/−mice had slightly higher
number of c-Fos positive cells (genotype effect, F1,19 = 5.04,
P < 0.05), but CBD treatment failed to reduce the cell
count significantly (treatment effect F1,19 = 1.76, P > 0.05;
genotype × treatment interaction F1,19 = 1.00, P > 0.05). In
the CA3 subfield, novelty-induced hyperactivity did not change
the number of c-Fos positive cells, although a non-significant
trend was detected (genotype effect, F1,19 = 3.22, P > 0.05;
genotype× treatment interaction, F1,19 = 4.13, P = 0.056).
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The numbers of c-Fos-positive cells after treatment with
CBD in extra-hippocampal brain regions are summarized in
Supplementary Table S1. In the basolateral amygdala, CBD
treatment reduced the number of c-Fos-positive cells in WT
animals only (genotype × treatment interaction F1,20 = 4.74,
P < 0.05). In the lateral septum, the number of c-Fos-
positive cells increased in WT mice after CBD treatment
(genotype × treatment interaction F1,19 = 8.54, P < 0.01). In
the prelimbic cortex, the greater number of c-Fos-positive cells
was observed in WT mice than in Gria1−/− mice, a difference
that disappeared after CBD treatment (genotype × treatment
interaction, F1,20 = 4.72, P < 0.05). Thus, compared to
the hippocampus, extra-hippocampal brain areas of wild-type
mice were hardly affected by the CBD. Only in the lateral
septal nucleus of Gria1−/− mice the c-Fos response to CBD
injection was opposite.

Effect of Intrahippocampal Cannabidiol
Treatment on Novelty-Induced
Hyperactivity
The c-Fos-based neuronal activation mapping revealed the
hippocampal complex as a main locus of novelty-induced
hyperactivity in Gria1−/− mice (Figure 2 and Procaccini et al.,
2011). Because systemic CBD both decreased the novelty-
induced hyperactivity and re-adjusted the c-Fos positive cell
score in the hippocampal dentate gyrus of Gria1−/− mice
(Figures 1, 2), we sought to determine whether infusion of
CBD into the dorsal hippocampus is sufficient to down-regulate
the hyperactivity. We found that the intrahippocampal CBD

microinjection (Figure 3A) significantly decreased, but did
not completely reverse, the novelty-induced hyperactivity
of Gria1−/− mice (Figures 3B,C), while not changing
locomotor activity of WT mice (genotype effect, F1,16 = 49.08,
P < 0.001; genotype × treatment interaction, F1,16 = 9.39,
P < 0.01), supporting our hypothesis that the attenuation of the
hyperactivity by CBD of Gria1−/− mice is mainly mediated by
its action in the hippocampus.

Chemogenetic Inhibition of
Novelty-Induced Hyperactivity
The c-Fos-based neuronal activation mapping has revealed
the hippocampal complex as a main locus of novelty-induced
overactivity in Gria1−/− mice (Figure 2 and Procaccini et al.,
2011). We used the clozapine-N-oxide (CNO) activation of
the Gi-DREADD receptors (hM4Gi; Armbruster et al., 2007)
to inhibit neuronal activity in the dorsal hippocampus of
Gria1−/− mice and to reveal the anatomical and cellular
substrate for the hyperlocomotion phenotype of the Gria1−/−
mice (Figures 4A,B). Gria1−/− mice that received these
bilateral AAV5-CaMKIIα-hM4Gi-mCherry injections in the
dorsal hippocampus, CNO-induced DREADD inhibition of
hippocampal CaMKIIα-expressing, excitatory cells decreased
hyperlocomotion of Gria1−/− mice to the level of WT
littermates (Figures 4C,D). In the WTs, CNO-induced DREADD
inhibition in the same cell population had no modifying effect on
the locomotor activity (treatment effect, F1,16 = 5.61, P < 0.05;
genotype effect, F1,16 = 12.11, P < 0.01; genotype × treatment
interaction, F1,16 = 10.27, P < 0.01). The effect persisted

FIGURE 3 | Intrahippocampal infusion of cannabidiol decreases novelty-induced hyperlocomotion of Gria1−/− mice. Animals were given an infusion with vehicle or
cannabidiol (5 µg/side) followed by recording of distance moved for 30 min. (A) Injector tip placements within the dorsal hippocampus for all experimental groups.
The brain images were modified with permission from Paxinos and Franklin (2001). (B) Distance traveled in a novel environment in 5-min periods. (C) Total distance
traveled during 30-min trials. ∗∗P < 0.01 and ∗∗∗P < 0.001 for the significances of the differences between the genotypes after vehicle; #P < 0.05 between vehicle
and CBD within the same genotype (Bonferroni post-test). N = 10 for both genotypes. Veh, vehicle; CBD, cannabidiol.
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FIGURE 4 | Chemogenetic inhibition of novelty-induced hyperlocomotion in Gria1−/− mice. (A) Virus injection resulted in hM4Gi-mCherry expression in the dorsal
hippocampus. Hb, habenula; fi, fimbria; scale bar: 1 mm. (B) A close-up photograph displaying transduced neurons and neurites in the dentate gyrus. No
transduced neurites were observed outside the hippocampus (not shown). Gr, granule cell layer; Mol, molecular layer; scale bar: 50 µm. (C) Distance traveled in a
novel environment in 5-min periods in mice transduced with DREADDs. (D) Total distance traveled during the 30-min trial in mice transduced with DREADDs.

(Continued)
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FIGURE 4 | Continued
∗∗P < 0.01 and ∗∗∗P < 0.001 for the significances of the differences between the genotypes after vehicle; #P < 0.05 and ##P < 0.01 between vehicle and CNO
treatments within the same genotype (Bonferroni post-test), n = 10 for both genotypes. (E) Distance traveled in a novel environment in 5-min periods in
non-DREADD expressing WT and Gria1−/− control mice. ∗∗∗P < 0.001 for the significances within drug treatment and between genotypes (ANOVA). (F) Total
distance traveled during the 30-min trial in non-DREADD-expressing control mice. ∗P < 0.05 between genotypes and within drug treatment (Bonferroni post-test).
n = 11–14. Veh, vehicle; CNO, clozapine-N-oxide.

until the Gria1−/− mice habituated to the locomotor activity
level of the WT mice (Figure 4C, time effect, F5,80 = 9.63,
P < 0.001; time × genotype interaction, F5,80 = 7.46, P < 0.001;
time× genotype× treatment interaction, F5,80 = 3.26, P < 0.01).
In contrast, in DREADD-non-expressing mice, the drug CNO
did not change the locomotor activity of either genotype
(treatment effect, F1,17 = 0.47, P > 0.05; treatment × genotype
interaction, F1,17 = 0.49, P > 0.05) and the Gria1−/− mice
displayed hyperlocomotion (genotype effect, F1,17 = 15.61,
P < 0.001) irrespective of the CNO treatment (Figures 4E,F).

DISCUSSION

Increased novelty-induced hyperactivity has been the most
consistent and robust behavioral phenotypic alteration in
mice with deficient AMPA-type glutamate receptor GluA1
subunits (for review see, Sanderson et al., 2008). In the
present study, Gria1−/− mice again reproduced the hyperactive
phenotype, also after stresses of the surgeries and intracerebral
infusions, indicating that the model is stable for these kinds of
experimental scrutiny.

The hippocampus is considered a most important brain
area for spatial learning and adaptation (Bannerman et al.,
2014; Moser et al., 2017). Inhibition of hippocampal principal
neurons by DREADD receptors after CNO strongly blocked
the novelty-induced hyperactivity in Gria1−/− mice, without
affecting the locomotor activity of wild-type mice, indicating that
the hippocampus is abnormally activated in the mutants during
extensive exploration of novel environments. Such an increased
hippocampal activity of Gria1−/− mice can be visualized by
increased numbers of c-Fos expressing cells during exposure to
unfamiliar surroundings [the present study (Procaccini et al.,
2011)]. Both acute and chronic drug treatments have reduced
both hippocampal c-Fos expression and behavioral hyperactivity
(Procaccini et al., 2013; Maksimovic et al., 2014a,b).

Our data, using hippocampus specific Gi-DREADD and
hippocampal infusion of CBD indicate that the hippocampal
dysfunction is responsible for the impaired habituation of GluA1
deficient mice to new environments or situations. This view
finds support by an inducible hippocampal deletion of GluA1
subunits from principal neurons during late adolescence which
phenocopied the hyperactivity as seen in mice with global
reduction of GluA1 (Inta et al., 2014). Since the DREADD system
targeted mainly the dentate gyrus granule cells but was detected
also in cornu ammonis regions (Figure 4A), it is likely that
the DREADD-driven inhibition recruited more extensively the
hippocampal formation leading to complete normalization of the
novelty-induced hyperactivity in Gria1−/− mice. Similarly, the
restoration of GluA1 in the hippocampus had attenuates the open

field hyperactivity of Gria1−/− mice (Freudenberg et al., 2016).
In our critical control experiment (MacLaren et al., 2016), the
drug used to activate the DREADD receptors, clozapine-N-oxide
(CNO) at the dose of 3 mg/kg, did not alter locomotor activities of
the mouse lines without the DREADD expression (Figures 4E,F).
This result is in line with the recent report that showed only
higher than 5 mg/kg doses of CNO having partial clozapine-like
effects in mice (Manvich et al., 2018).

Although hyperactivity and responses to novelty are often
linked to increased dopaminergic mechanisms (Boekhoudt et al.,
2016) and the Gria1−/− mice have been suggested to show
hyperdopaminergic phenotype (Wiedholz et al., 2008), our
previous experiments failed to find differential c-Fos expression
between the Gria1−/− and WTs in the midbrain and striatal
dopaminergic regions after exposure to a novel environment
(Procaccini et al., 2011) and the hyperactive, hippocampally
restricted GluA1 subunit-deficient mice had normal striatal
dopamine levels (Inta et al., 2014). However, pharmacological
antagonism of dopamine D2 receptors has been shown to non-
selectively reduce hyperactivity in both Gria1−/− and WT mice
(Wiedholz et al., 2008), making it difficult to fully exclude the role
of putatively enhanced dopamine mechanisms in the Gria1−/−
mice. Furthermore, recent neuronal pathway modulation on
regulation of habituation and novelty preference in mice has
indicated important interactive roles of the medial habenula
and interpeduncular nucleus with the VTA, with the habenula
activating the interpeduncular nucleus to recognize familiarity
and the VTA inhibiting the interpeduncular nucleus to promote
novelty seeking (Molas et al., 2017).

Despite that the dopaminergic dysfunction has a recognized
role in schizoaffective disorders and might play a role in
Gria1−/− mice, there is evidence rather pointing to indirect
effects of cannabinoids on dopamine cell firing, by altering
glutamate neurotransmission (Colizzi et al., 2016). The
Gria1−/− mouse model has been sensitive to drugs that
downregulate glutamate neurotransmission including several
antiepileptic drugs and AMPA antagonists (Procaccini et al.,
2013; Maksimovic et al., 2014a,b). CBD shows little target
selectivity and has multiple actions on various receptors
and ion channels (Izzo et al., 2009; Ibeas Bih et al., 2015).
While our data on attenuation of locomotor hyperactivity by
silencing glutamatergic neurons via Gi-coupled DREADDs
could imply the involvement of the inhibitory CB1 receptors,
the inhibition of the presynaptic glutamate release via CBD
action on the cannabinoid receptors have been largely dismissed
(Ibeas Bih et al., 2015). One of the most interesting and
relevant CBD actions is the inhibition of the G protein-
coupled receptor 55 (GPR55). Hippocampally expressed
G-protein-coupled receptor 55 (GPR55) induces Ca2+

release from presynaptic stores leading to increased synaptic
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neurotransmitter release (Sylantyev et al., 2013; Hurst et al.,
2017). As GPR55 colocalizes presynaptically with the vesicular
glutamate transporter 1 (Sylantyev et al., 2013), glutamate is
the likely neurotransmitter for the GPR55-induced increase of
excitatory transmitter release. Importantly, CBD inhibits GPR55-
mediated excitatory drive in hippocampal synapses (Sylantyev
et al., 2013), which may suggest a pharmacological significance in
damping overactivated network within the hippocampal circuits
(Kaplan et al., 2017). While a direct measurement of glutamate
release in response to novelty-induced hyperactivity in Gria1−/−
mice needs to be established, previous data suggest a role for
glutamate release in novel environments (Bianchi et al., 2003).
Therefore, the GPR55-regulated glutamate release provides a
possible mechanism for the CBD-mediated downregulation of
hippocampal excitatory activity and behavioral hyperactivity in
Gria1−/−mice.

In addition to the activation of GPR55, CBD appears also
to possess agonistic properties at serotonergic Gi-coupled 5-
HT1A receptors, through which it can induce anxiolytic-like
effects and mediate adaptation to stress (Joca et al., 2003; Russo
et al., 2005; Rock et al., 2012). These receptors are localized
at presynaptic terminals of glutamatergic synapses and their
activation suppresses glutamatergic signaling (Cai et al., 2002).
Thus, CBD actions on 5-HT1A receptors might have contributed
to the decrease in hippocampal neuronal overactivation in
Gria1−/−mice.

The intrahippocampal CBD injection partially rescued the
novelty-induced hyperactive phenotype in the Gria1−/− mice.
Similar doses as in our study (bilaterally 5 µg/side) have been
previously injected into the brain parenchyma, although not into
the hippocampus. A 10-fold lower dose of CBD (0.4 µg/side)
facilitated fear extinction, when injected bilaterally to rat
infralimbic cortex (Do Monte et al., 2013). A higher unilateral
periaqueductal CBD dose of 10 µg was required to produce an
anxiolytic-like effect in rats, while 20 µg dose failed to affect the
behavioral output (Campos and Guimaraes, 2008). In a summary,
these studies suggest that bilateral 5 µg/side dose of CBD reaches
appropriate concentration intrahippocampally to have an effect
on various hippocampally expressed CBD targets, although the
affinity of CBD to them might vary (Ibeas Bih et al., 2015).

Overall, our data suggest that silencing hippocampal
glutamatergic neurons and systemic and intrahippocampal

pharmacological treatment with CBD alleviate behavioral
hyperactivity in Gria1−/− mice. CBD in this study has
reproduced the effects of glutamate-modulating drug-treatments
in blunting the excessive hyperlocomotion and the hyperactivity
of the dorsal hippocampus in Gria1−/− mice (Procaccini et al.,
2013; Maksimovic et al., 2014a,b). Although the precise brain
circuitry and pharmacological targets involved in the CBD
effect require further elucidation, our data contribute to the
possibility that CBD actions on glutamatergic transmission in
the hippocampus could be therapeutically applied to dampen
hyperexcitable hippocampal and other brain circuitries.
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